Unloading Relief Valves

These valves are used to operate the pumps with minimum load in accumulator circuits or in high-low pump circuits.

In accumulator circuits, when the system pressure reaches to a cut out pressure (adjusted maximum), the valve acts to divert the pump delivery to the reservoir at low pressure, thus the pump is unloaded automatically.

When the accumulator pressure drops to the cut in pressure (refer to characteristic chart on page 269), the valve directs the pump delivery to the accumulator and hydraulic system.

An integral check valve prevents reverse flow through the valve from the accumulator.

In high-low pump circuits, the valve acts to unload the large volume pump with the same manner as described above during load operation of the small volume pump.

Specifications							
Model Numbers	Max. Operating Pres. MPa (PSI)	Max. Flow L/min (U.S.GPM)	Approx. Mass kg(1bs.)				
BUCG-06-**-30/3080/3090	21 (2050)	125 (33)	12 (26.5)				
BUCG-10-**-25/2580/2590	21 (5050)	250 (66)	21.5 (47.4)				

Model Number Designation

Max. erating Pres. MPa (PSI)	Max. Flow L/min (U.S.GPM)	Approx. Mass kg(1bs.)	-	
	125	12	_	
21 (2050)	(33)	(26.5)		
21 (3030)	250	21.5		
	(66)	(47.4)		

F-	BUC	G	-06	-B	V	-30	*
Special Seals	Series Number	Type of Mounting	Valve Size	Cut-out Pres. Adj. Range MPa (PSI)	High Venting [*] Pres. Feature	Design Number	Design Standards
F: Special Seals for Phosphate	BUC: Unloading	G: Sub-plate	06	B: 2.5-7.0 (360-1020) C: 3 5-14	V: For High Venting Pressure	30	None: Japanese Std. "JIS" 80: European
for Phosphate Ester Type Fluids (Omit if not required)		Mounting	10	(510-2030) H: 7.0-21 (1020-3050)	Feature (Omit if not required)	25	bu: European Design Std.90: N. American Design Std.

 \star Use the high-venting-pressure type to reduce the shift time from unloading to onloading.

Pilot-drain system

A pilot-drain system is typically configured with an external pilot and an external drain, as indicated by the right graphic symbol. However, customized pilot-drain systems with an internal pilot are also available.

For the internal pilot type, the design standard number at the end of the model number is uniquely assigned. Refer to the table below for the internal pilot type. Please contact us for details.

Pilot &	Graphic	European Design	N. American Design	Japanese Std.
Drain Conn.	Symbols	Standard	Standard	"JIS"
Int. Pitot-		BUCG-06-**-30 <u>801</u>	BUCG-06-**-30 <u>901</u>	BUCG-06-**-30 <u>01</u>
Int. Drain		BUCG-10-**-25 <u>801</u>	BUCG-10-**-25 <u>901</u>	BUCG-10-**-25 <u>01</u>
Int. Pitot- Ext. Drain		BUCG-06-**-30 <u>802</u>	BUCG-06-**-30 <u>902</u>	BUCG-06-**-25 <u>02</u>

Instructions

- To adjust the pressure, loosen the lock nut and turn the pressure adjustment handle slowly clockwise for higher pressures or anti-clockwise for lower pressures. After adjustments, do not forget to tighten the lock nut.
- Take care not to neglect connecting the drain pipe to the reservoir; otherwise not only will the valve fail to operate properly but also the line pressure will rise infinitely. Extend the end of the drain pipe into fluid.
- Limit the pressure drop between the valve and the accumulator in an accumulator circuit below 10% of the cut-out pressure.
- Limit the drain port back pressure below 2% of the cut-out pressure.

Attachment

Mounting Bolts

Valve Model	Socket Head Cap Screw						
Numbers	Japanese Std. "JIS" and European Design Std.	N. American Design Std.					
	M16×55Lg. (2 pcs.)	5/8-11 UNC × 2-1/4 Lg. (2 pcs.)					
BUCG-06	M16×110Lg. (2 pcs.)	5/8-11 UNC × 4-1/2 Lg. (2 pcs.)					
	M16×130Lg. (2 pcs.)	5/8-11 UNC × 5 Lg. (2 pcs.)					
DUCC 10	M20 \times 70Lg. (2 pcs.)	3/4-10 UNC × 2-3/4 Lg. (2 pcs.)					
BUCG-10	M20×160Lg. (4 pcs.)	3/4-10 UNC × 6-1/2 Lg. (4 pcs.)					

Sub-plate

Valve Japanese Stand		rd "JIS" European Design Stan		n Standard	N. American Desi	Approx.	
Model Numbers	Sub-plate Model Numbers	Thread Size	Sub-plate Model Numbers	Thread Size	Sub-plate Model Numbers	Thread Size	Mass kg (lbs.)
BUCG-06	BUCGM-06-20	Rc 3/4	BUCGM-06-2080	3/4 BSP.F	BUCGM-06-2090	3/4 NPT	4.4 (9.7)
BUCG-10	BUCGM-10-20	Rc 1-1/4	BUCGM-10-2080	1-1/4 BSP.F	BUCGM-10-2090	1-1/4 NPT	7.2 (15.9)

• Sub-plates are available. Specify the sub-plate model number from the table above. When sub-plates are not used, the mounting surface should have a good machined finish.

P

Cut-in Pressure vs. Cut-out Pressure

Hydraulic Fluid: Viscosity 35 mm²/s (164 SSU), Specific Gravity 0.850

Unloading Pressure vs. Flow

Hydraulic Fluid: Viscosity 35 mm²/s (164 SSU), Specific Gravity 0.850

Pressure Drop for Check Valve

Hydraulic Fluid: Viscosity 35 mm²/s (164 SSU), Specific Gravity 0.850

Viscosity	mm ² /s	15	20	30	40	50	60	70	80	90	100
viscosity	SSU	77	98	141	186	232	278	324	371	417	464
Fact	or	0.81	0.87	0.96	1.03	1.09	1.14	1.19	1.23	1.27	1.30

• For any other specific gravity (G'), the pressure drop (∠P') may be obtained from the formula below.

 $\varDelta P' = \varDelta P (G'/0.850)$

Spare Parts List

List of Seals

Itam	Nome of Dorte	Part Ni	umbers	Quantity	
nem	Iname of Parts	BUCG-06	BUCG-10	Quantity	
28	O-Ring	SO-NB-P6	SO-NB-P6	3	
29	O-Ring	SO-NA-P9	SO-NA-P9	1	
30	O-Ring	SO-NB-P11	SO-NB-P9	1	
31	O-Ring	SO-NB-P12	SO-NB-P12	1	
32	O-Ring	SO-NB-P18	SO-NB-P18	1	
33	O-Ring	SO-NB-P24	SO-NB-P32	1	
34	O-Ring	SO-NB-P28	SO-NB-P32	5	
35	O-Ring	SO-NB-P32	SO-NB-P45	1	

Note: When ordering the seals, please specify the seal kit number from the table below.

List of Seal Kits

Valve Model Numbers	Seal Kit Numbers
BUCG-06	KS-BUCG-06-30
BUCG-10	KS-BUCG-10-25

Brake Valves

Brake valves are used on hydraulic cylinders and in brake circuits of hydraulic motors. They can brake with any pressure, permitting smooth stopping.

Specifications

Model Numbers	Max. Operating Pressure MPa (PSI)	Pres. Adj. Range MPa (PSI)	Max. Flow L/min (U.S.GPM)
UBGR - 03 - * - B - 20 *		0.7 - 7.0 (100 - 1020)	50 (12 0)
UBGR - 03 - * - H - 20 *	25	3.5 - 25 (510 - 3630)	50 (13.2)
UBGR - 06 - * - 20 *	(3630)	0.7 - 25 (100 - 3630)	125 (33.0)
UBGR - 10 - * - 20 *		0.7 - 25 (100 - 3630)	200 (52.8)

Model Number Designation

	-					
F-	UBGR	-03	-A	-B	-20	*
Special Seals	Series Number	Valve Size	Туре	Pres. Adj. Range MPa (PSI)	Design Number	Design Standards
F: Special Seals for Phosphate Ester Type Fluids (Omit if not required)	03	A: For A-Line B:	B: 0.7-7.0 (100-1020) H: 3.5-25 (510-3630)	20		
	Valves, Sub-plate	06	For B-Line W: For A•B-Lines	None: 0.7-25 (100-3630)	20	Refer to 🛪
	woulding	10			(100-3630)	20

★ Design Standards: None.......... Japanese Standard "JIS" and European Design Standard

90 N. American Design Standard

• Consult Yuken when detailed material such as dimensions figures is required.

C

Semiconductor Type Pressure Switches

These pressure switches have built-in electronic circuit on a semiconductor pressure sensor and an open collector insulated by a photocoupler has been used as output. As the use of semiconductor has put movable parts away from the sensor section, high reliability and durability can be obtained.

These pressure switches are suitable for the applications not only compact, light weight and vibration-proof are required but also better substitute to conventional pressure switches.

Model Number Designation

J	Т	-02	-100	-11
Series Number	Type of Mounting	Valve Size	Max. Setting Pressure MPa (PSI)	Design Number
J: Semiconductor Type Pressure Switch	T: Threaded Connection	02	35 : 3.5 (510) 100: 10 (1450) 200: 20 (2900) 350: 35 (5080)	11

Specifications

Model Numbers Description	JT-02 -35-11	JT-02 -100-11	JT-02 -200-11	JT-02 -350-11
Max. Operating MPa Pressure (PSI)	10 (1450)	10 (1450)	20 (2900)	35 (5080)
Proof Pressure MPa (PSI)	20 (2900)	20 (2900)	40 (5800)	50 (7250)
Pressure Setting Range MPa (PSI)	0.1 - 3.5 (15 - 510)	1 - 10 (145 - 1450)	2 – 20 (290 – 2900)	3.5 - 35 (510 - 5080)
Pressure Setting (ON pressure Setting)	Single adjustment: ON trimmer setting (variable resistor)*			
Differential Pressure Setting (OFF Pressure Setting)	Single adjustment: DIFF trimmer setting (-1 to -10% of the ON pressure setting)			
Sign on act	When the ON pressure, the LED indicator lights.			
Output System	Open collector (photocoupler insulated) Maximum operating voltage : 35 VDC; maximum current: 100 mA			
Power Source	10 to 28 VDC (ripple included). A constant-voltage power supply must be used. Curent consumption: 10 mA.			
Insulation Resistance	$100 \text{ M}\Omega$ or more			
Response Time	1.5 ms	20 ms (damper contained)		
Repeatability	Approx. 0.5 %			
Operating Temperature Range	-20 to +70 °C (-4 to 158 °F)			
Setting Fluctuation with Temperature Drift	1% or less of the maximum operating pressure relative to 10 °C change.			
Storage Temperature Range	-40 to +105 °C (-40 to 221 °F)			
Dust-proofness /Water-Proofness	IEC Pub. 529 IP54			
Vibration-resistance	98 m/s ² (322 ft./s ²) (10 – 55 Hz)			
Shock-resistance	98 m/s ² (322 ft./s ²)			
Mass	17g (.39 lbs.)			

★ Trimmer Rotation Angle: 0 to 260°

Instractions

Voltage-proof test should not be carried out as semiconductor has been used.

PRESSURE CONTROLS

Adjustment

- Before starting, turn the ON and DIFF trimmers fully clockwise. (Trimmer Rotation Angle:0 – 260°)
- 2. Turn on the power.
- < ON pressure setting > Apply required pressure to the switch. Turn ON trimmer slowly anti-clockwise and stop it when LED indicator lights, ON setting obtained.

Application Examples of Electrical Circuit

- 4. < Differntial pressure setting >
- Gradually reduce pressure to obtain the required OFF pressure. Then, turn DIFF trimmer anti-clockwise slowly and stop it when LED indicator goes off. The OFF setting is now obtained.
- Make sure if "ON" or "OFF" setting is correct by working of LED indicator when applying or reducing pressure repeatedly several times.

 \square

Semiconductor Type Pressure Switches